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ABSTRACT-Stepwise multiple regression analyses are 
used t o  explore the statistical (linear regression) relation- 
ships between satellite-observed earth-atmosphere emis- 
sion spectra and meteorological parameters. The stepwise 
regression technique permits screening of a large number 
of potentially useful spectral observations (predictors) 
to  isolate those few tha t  contribute most to  the explanation 
of the variance of a particular meteorological parameter. 
Such a technique is particularly useful when applied to  
complete spectra of the type obtained by the I R I S  (in- 
frared interferometer spectrometer) instrument on the 
recent Nimbus meteorological satellites. Emphasis is 
placed upon inferences of key meteorological parameters 

~ 

not usually obtained from routine inversion of satellite 
spectral observations. The technique is applied to  a sample 
of Nimbus 3 I R I S  spectra. The results indicate tha t  
information on atmospheric temperatures, geopotential 
heights of pressure surfaces, tropopause pressure, and 
tropopause temperature can be obtained directly from the 
satellite observations with the use of simple linear re- 
lationships having only a few terms each. Based upon the 
results of this exploratory study, suggestions are made 
for futher development and exploitation of the stepwise 
regression analysis technique and its application to  the 
problem of inferring meteorological parameters from 
earth-atmosphere emission spectra of the I R I S  type. 

1. INTRODUCTION 

Statistical inversion techniques for obtaining atmos- 
pheric structure information from remote sensing of 
atmospheric. radiation have been discussed by Westwater 
and Strand (1968), Conrath (1969), and others, and have 
actually been applied to satellite radiation observations 
by Smith et al. (1970) and Conrath et al. (1970). In these 
techniques, multiple regression analysis is performed on 
a data set of simultaneous radiation and meteorological 
observations to derive an equation relating the meteor- 
ological parameter to the radiation observations. I n  the 
present study, we apply a stepwise multiple regression 
scheme, rather than straight multiple regression, to a 
sample of Nimbus 3 infrared interferometer spectrometer 
(IRIS) observations. The stepwise technique is used to 
develop linear relationships between the meteorological 
parameters (predictands) and the satellite radiation obser- 
vations (predictors). The advantage of stepwise regression 
is twofold. 

1. It permits screening of a large number of potential piedic. 
tors-such as those associated with a complete IRIS spectrum-to 
obtain the best ones for specifying any meteorological paramet,er. 

2. It can be used to  limit the number of predictors t o  the few 
that  make the most important contributions to explaining a par- 
ticular meteorological parameter’s variance. Theoretical studies 
(Twomey 1965, 1966) and analyses of weighting functions (Rodgers 
1970) show tha t  the information available in the spectrum of the 
15-pm C02 band (from which the temperature profile is usually 
derived) is limited to  something like four independent pieces. Thus, 
most of the information on the temperature at any one atmospheric 
level should be obtainable using only a few predictors. 

1 Now affiliated with the Department of Environmental Sciences, Tel-Aviv Univer- 
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The meteorological parameters usually inferred from 
satellite-observed infrared spectra are temperature, water 
vapor amounts, and ozone amounts. We may call these 
the primary meteorological variables because they, 
together with clouds if present, control the nature of the 
observed infrared spectrum. However, other meteorolog- 
ical parameters are related to  the primary variables, and 
hence, i n f o r m a t i o n  a b o u t  these parameters s h o u l d  also be 
contained in the observed spectra. That this is so is evi- 
denced by the relationships obtained between the broad- 
band radiation observations of t’he TIROS and Nimbus 
satellites and such meteorological parameters as geopo- 
tential height (Jensen et al. 1966), vertical motion and 
meridional flow (Shenk 1963), areas of precipitation 
(Chekirda and lakovleva 1967), stratospheric flow pat- 
terns (Zak and Panofsky 1968), and jet stream location 
and characteristics (Zhvalev et  al. 1967, Martin and 
Salomonson 1970). Thus, in the present study, we have 
applied the stepwise regression technique not only to the 
temperature profile inversion problem, but also to the 
inference of geopotential height of pressure surfaces, 
tropopause temperature. and tropopause pressure directly 
from satellite spectra. 

2. DATA AND PROCEDURES 

To carry out the stepwise regression analyses we need 
concurrent satellite radiation observations and conven- 
tional, meteorological observations. The satellite-observed 
spectra used in this study were measured by the IRIS 
experiment flown on the Nimbus 3 satellite. The IRIS 
instrument is described in detail by Hanel et  al. (1970) 
and some of the results obtained with it are discussed by 



FIGURE 1.-IRIS spectra were obtained for the subsatellite track segments shown on the map. The numbers refer to orbit numbers, D to 
day, N to  night. 

Conrath et al. (1970). Briefly, IRIS measures the earth- 
atmosphere thermal emission spectrum from 400 to 2000 
cm-' (5-25pm) with a spectral resolution of 5 cm-' and 
spacing of about 2.1 cm-l. The measurements are made 
with a Michelson interferometer that has a radiometric 
precision and accuracy of about 1 percent. However, after 
the first 50 orbits, the data from the 1400-2000 cm-' range 
are unreliable and are not used in the present study. Be- 
cause of the 8' field of view of the instrument, the radiation 
that gives rise to a single spectrum originates from a hori- 
zontal circular area on earth 150 km in diameter, which is 
thus the effective horizontal resolution of the observation. 
Consecutive spectra are of the order of 100 km apart. 

The IRIS data were obtained from the Nimbus 3 IRIS 
archival tape for Apr. 27, 1970. [Information on the for- 
mat of the IRIS archival data tapes is contained in the 
Nimbus 3 User's Guide (Goddard Space Flight Center 
1969)l. On this day, approximately 4,000 spectra were 
measured. To limit the regression analysis to regions of the 
globe where reasonable amounts of conventional meteoro- 
logical data are available, we used only spectra observed 
between 30' and 60'N in the study. Five hundred spectra 
fell into this category, and the orbital segments during 
which these spectra were obtained are shown in figure 1. 

Conventional meteorological data for the time period of 
the satellite observations were obtained from a meteoro- 
logical data tape supplied by NASA-Goddard Space 
Flight Center. The data tape contained gridded meteoro- 
logical data based upon standard U.S. National Weather 
Service analyses for the Northern Hemisphere. The 
meteorological data are for two times daily-the standard 
observing times of 0000 and 1200 GMT. 

To obtain concurrency of the satellite observations and 
the meteorological observations, one must interpolate the 
meteorological data in both time and horizontal space to 
the times and geographical locations of the satellite obser- 
vations. This meshing of the meteorological data with the 
IRIS  observations was accomplished by using linear inter- 
polation of the meteorological data in both time and space. 

From the meteorological data set, we selected tropopause 
pressure, tropopause temperature, and the geopotential 

heights and temperatures a t  850, 700, 500, 300, 200, and 
100 mb as predictands. Potential predictors were obtained 
from the IRIS spectra. I n  the spectral range 400-1400 
cm-', radiation intensities a t  about 500 wave numbers 
are available as potential predictors. With the stepwise 
regression analysis technique, it is possible to consider 
each of these intensities as a potential predictor. How- 
ever, observations a t  neighboring wave numbers are not 
independent and, hence, the 500-odd available radiation 
intensities are not independent observations. I n  the present 
study, which is exploratory in nature, the number of 
potential predictors was limited to 25. Potential predictors 
were selected from the water vapor, carbon dioxide, and 
ozone bands, and the atmospheric window. Instead of 
using the radiation intensities directly, we converted them 
to brightness temperatures with the use of the Planck law. 
I n  addition to these brightness temperatures, two other 
potential predictors were defined on the basis of the fol- 
lowing reasoning. If we consider the tropopause to be the 
level of lowest temperature, then the wave number within 
the 15-pm COz band whose weighting function peaks a t  
the tropopause level should record the lowest brightness 
temperature. As the tropopause moves up and down, dif- 
ferent wave numbers will have their weighting function 
peaks a t  the tropopause level. Thus, the wave number of 
minimum brightness temperature should be related to the 
height of the tropopause. Hence, the wave number, on one 
side of the 15-pm COz band, having the lowest brightness 
temperature is a potential predictor of tropopause pres- 
sure. This line of reasoning also suggests that the minimum 
brightness temperature itself should be related to the 
tropopause temperature. Thus, both the minimum bright- 
ness temperature in the 670-720 cm-' range and the wave 
number a t  which it occurs are included among the 110- 

tential predictors. A listing of all 25 potential predictors is 
contained in table 1. 

To perform the stepwise multiple regression analysis, 
we utilized computer subroutines from the International 
Business Machines Scientific Subroutine Manual with 
only minor modifications.2 The subroutines perform a 

2 Mention of a commercial product does not  constitute an endorsement. 
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TABLE 1.-List of potential predictors 3. RESULTS 
Predictor Predictor [Brightness 

Region of spectruiii number  temperature,  Ts, a t  
wave numbor Y (cm-l)] 

- 

H 2 0  rotational band 

Peak CO, absorption 

15-pm CO, band 

Atmospheric window 

9.6-pm 0, band 

6.3-pm H 2 0  band 

1 400 
2 450 
3 500 

4 668 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

670 
680 
691 
702 
712 
722 
733 
744 
754 
764 

15 900 

16 1040 
17 1052 
18 1064 

19 1198 
20 1249 
21 1299 
22 1350 
23 1400 

Minimum brightness temperature in 24 T B  (min) 

Wave number of minimum brightness 25 u[TB(min)] 
15-pm CO, band 

temperature in 15-pm CO, band 

stepmise multiple regression analysis for a predictand and 
a set of potential predictors. I n  each step of the regression 
i=l ,  2, 3, . . ., p where p is the number of potential pre- 
dictors, the abbreviated Doolittle method (Bennett and 
and Franklin 1954, app. A) is used to calculate which 
potential predictor results in the largest reduction in the 
sum of the squares of the deviations a t  this step and 
hence should enter the regression. I n  the present study, 
me have used a threshold value of 2 percent for the entry 
of o predictor. That  is, the regression is terminated when 
no potential predictor produces more than a 2-percent 
reduction in the sum of the squares. This serves to elim- 
inate predictors whose contribution to variance reduction 
is of the same order as their own observational errors. 

Because the infrared spectra are affected by the pres- 
ence of clouds, regression analyses were also performed 
on a subset of the complete 500-case data set-the subset 
consisting of clear-sky cases only. A particular infrared 
spectrum was classified as a clear-sky case if the absolute 
difference between the window brightness temperature 
and the actual surface temperature was less than 5°C. 
Sixty-three spectra, or 13 percent of the complete data 
set, fell into this clear-sky subset. 

Correlation Matrix 

Before analyzing the results of the regression analyses, 
i t  is of interest to examine the correlations among the 
various potential predictors. These correlations are con- 
tained in the correlation matrix of the predictors that is 
shown in table 2 and is based upon data from all 500 
IRIS spectra. As discussed earlier, the predictors) are 
primarily brightness temperatures, and the wave numbers 
shown a t  the top and side of table 2 indicate the wave 
numbers to which the brightness temperatures apply. 
There are two basic reasons for the existence of high 
correlations among the potential predictors. First, a 
number of different wave numbers will be sensitive to 
essentially similar portions of the atmosphere because of 
the overlap of weighting functions-primarily of one 
band, but also of several bands. Brightness temperatures 
a t  these wave numbers will be highly correlated. Second, 
brightness temperatures a t  different wave numbers may 
be correlated even though they are sensitive to different 
parts of the atmosphere because of natural interlevel 
correlations of meteorological parameters. For example, 
the presence of an inverse relationship between tropo- 
spheric and stratospheric temperatures has been known 
for some time nom. The effect of overlapping weighting 
functions can be seen, for example, by examining the 
correlation matrix for correlations between the bright- 
ness temperatures of any two neighboring wave numbers 
within the same absorption band. The effect of distant 
interlevel correlations of atmospheric structure is manifest 
in the negative correlations between brightness temper- 
atures a t  the edge (high wave numbers) of the 15-pm 
CO, band (low absorption, hence, sensitive to lower 
troposphere and surface) and those near the center 
(low wave numbers) of the band (high absorption, hence, 
sensitive to  stratosphere and upper troposphere). This 
negative relationship exists even though, of the 500 
spectra upon which the correlations are based, most are 
affected by clouds that tend to hide lower levels of the 
atmosphere from view and, hence, decrease the magni- 
tudes of these negative correle tions. That  this is the case 
can be seen in table 3, which shows, for the complete data 
set (cloudy plus clear skies) and for clear skies only, correla- 
tions between the brightness tempera,ture a t  668 cm -1  (peak 
COz absorption; weighting function peak in stratosphere 
a t  about 20 km or about 50 mb) and the brightness 
temperatures a t  other wave numbers of the CO, band. 
The high negative correlations between the more trans- 
parent and the more opaque parts of the 15-pm COz 
band for clear skies imply that, even in the presence of 
cloudiness, one should be able to specify something about 
the meteorological structure of the region below the clouds 
by using the more opaque channels as predictors. I n  such 
cases, the predictability of the lower atmosphere structure 
will depend not on a direct sensitivity to that layer’s 
infrared emission but solely on the degree of correlation 
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TABLE 2.-Correlation matriz of predictors (wave numbers i n  em-') 

668 
670 
680 
691 
702 

HzO band 

COz band 

Window 

0 3  band 

Hz0 band 

- 
A HzO band COz band W i n -  O ~ b a n d  H20 band 

dow a 3  
r -, ' 3 ;  - 

400 450 500 668 670 680 691 702 712 722 733 744 754 764 900 1040 1052 1064 1198 1249 1209 1350 1400 

1.0 0.74 0.73 0.20 0.18 0.09-0.060.33 0.66 
1.0 .99 ,06 .03 -.09 -.14 .26 .73 

1.0 .03 .01 -.12 -.15 .25 .73 
1.0 .99 .84 .34 .84 .60 

1.0 .87 .37 .84 .57 
1.0 .65 .65 .32 

1.0 .43 -.11 
1.0 .69 

1.0 

0.73 0.71 0.70 0.67 0.63 0.60 0.57 0.55 0.61 0.63 0.63 0.55 0.57 0 . n  -0.05 -0.17 
. 90 .94 .94 .92 .88 .83 .66 .64 .81 .84 .83 .66 .73 .38 -. 13 -. 25 
. 90 .95 .96 .93 .89 .85 .67 .65 .82 .86 .84 ,67 .74 .38 -. 14 -. 26 
.27 .02 -.03 -. 13 -. 21 -. 27 .13 .15 -.09 -. 10 -. 10 -.03 -,06 -.01 .31 .04 
.24 -.01 -,06 -.16 - . 2 4  -.30 . l o  .12 -.13 -.13 -.13 -.05 -.09 -.01 .34 .05 
.04 -.lo -.21 --.% -.33 -.38 -.15 -.12 -.33 -.% -.29 -.19 -.22 -.06 .66 .12 

.98 -.02 
.41 .23 .19 .05 -.01 -. 09 .24 .23 .08 .08 .06 .09 .04 .09 .38 -. 19 
.91 .78 .74 .65 .58 .51 .72 .72 .66 .63 .62 ,513 .62 .24 -. 13 - .21 

1.0 .96 .94 .90 .86 .81 .81 .80 .87 .87 .86 .71 .70 .30 -. 23 -. 23 
1.0 .99 .97 .94 .90 .78 .76 . 91 .92 .91 .75 .75 .32 -. 28 -. 25 

1.0 .98 .96 .02 .76 .74 .91 .93 .92 .74 .75 .32 -. 21 -. 25 
1.0 .99 .97 .73 .71 91 .95 .94 .73 .76 .31 -. 28 -. 23 

1.0 .99 .72 .70 .92 .96 .95 .72 .74 .28 -. 31 -. 23 
1.0 .71 .68 .91 .95 .94 .70 .72 .26 -. 33 -. 22 

1.0 .98 .91 .76 .78 .76 .66 .30 -.44 -. 12 
1.0 .89 .73 .75 .76 .66 .20 -.43 -. 13 

1.0 .94 .94 .80 .76 .31 -.46 -.21 
1.0 .98 .75 .77 .30 -.35 -.21 

1.0 .77 .77 .30 -.37 -.21 
1.0 .76 .44 - 32 -.12 

1.0 .47 -.31 -.12 
1.0 -.05 -.15 

1.0 .oo 

-.24 -.29 - . 2 8  -.30 -.33 -.35 - ,43 -.43 -.47 -.36 -.39 -.33 -.33 -.05 

TABLE 3.-Corrclations between brightness temperature at 668 cm-I and brightness temperatures at other wave numbers of the 16-pm COZ band 

Wave number (cm-1) 
670 680 691 702 712 122 733 744 754 764 

Complete data  set 0. 99 0. 84 0. 34 0. 84 0. 60 0. 27 0. 02 -0. 03 -0. 13 -0.21 
Clear skies only 0. 96 0. 90 0. 84 0.51 -0. 75 -0. 81 -0. 81 -0. 79 -0. 81 -0. 84 

between lower and upper atmosphere structure. Such 
correlations are exploited in the statistical inversion 
technique developed by Smith et  al. (1970). 

Temperature 

Results of the stepwise multiple regression analysis 
with temperature as the predictand are contained in 
table 4. This table shows, for pressure levels from 850 to 
100 mb, the coefficient of multiple correlation between 
the selected predictors and the temperature, the selected 
predictors, and the constant term (intercept) and regres- 
sion coefficients of the regression equation. There are 
several points worthy of note: 

1. Despite the presence of cloudiness in most of the cases of the 
complete data  set, correlation coefficients for the lower atmospheric 
levels are still quite high, indicating that  information on tempera- 
tures below cloud levels can be obtained from the infrared spectral 
data. As pointed out in the previous section, this is due to the strong 
interlevel correlations between lower atmosphere and upper atmos- 
phere temperatures. 

2. No more than three predictors are necessary to  obtain the 
correlations shown in table 4, and, in fact, one predictor will suffice 
for the lower half of the atmosphere. This type of result was antici- 

pated and was one of the reasons for the use of the stepwise multiple 
regression scheme. 

3. The best predictor of lower atmosphere temperatures is 
TB(min), the lowest brightness temperature along one side of the 
15-pm band. Although initially selected as a potential predictor 
because of its possible use in specifying tropopause temperature, 
this predictor has been found to be the best predictor for specifying 
lower atmosphere temperatures. This finding illustrates one of the 
advantages of the stepwise technique in combination with a com- 
plete infrared spectrum ; that is, unanticipated relationships may 
be uncovered. 

4. If TB(min) had not been available as a predictor, the bright- 
ness temperature at 691 cm-' would have been best for specifying 
the temperature at the three lowest atmospheric levels. The cor- 
relation coefficients of TB(691 cm-') with atmospheric tempera- 
tures at these three levels are slightly less (- 0.01) than those shown 
in table 4 for TB(min). This suggests that  either TB(min) or 
TB(691 cm-1) could be used with about equal effectiveness to 
specify temperatures a t  500 mb and below. This further suggests 
that  if both are available, both can be used to specify a tempera- 
ture, and an average of the two can be taken as the final tempera- 
ture estimate. This procedure reduces the effects of errors in the 
radiation observations and should lead to a better estimate of 
temperature than could be obtained using one of the predictors 
alone. 

Results of the regression analyses for temperature in 
the clear-sky cases are shown in table 5 .  Except for the 
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TABLE 4.--Results of stepzcise multiple regression analysis of temperature ("0 using complete data set 

Predictors Intercept and regression coefficients Pressure level (nib) Coefficient 01 Multiple correlation 

850 
700 
500 
300 
200 
100 

0. 76 TB (min) 479 -2. 14 
. 8 7  TB (rnin) 486 -2 .21  
. 90 T B  (min) 452 -2. 12 
. 8 1  691 702 670 165 -1 .26  0. 627 -0. 313 
. 67 691 v[TB(min)] - 5 0 . 4  1.18 -0.387 
. 87 TB (min) 712 - 394 1.74 -0 .208  

TABLE 5.-Results of slepwise multiple regression analysis of temperature ("0 using clear-sku data 

Pressure level (nib) Coefficient of multiplf correlation Predictors Intercept and regression coefficients 

850 
700 
500 
300 
200 
100 

0. 93 764 
. 95 1064 702 
. 94 1064 702 450 
. 78 1249 754 
. 86 702 670 733 
. 9 1  1064 691 

~ 

-255 0. 930 
12. 8 0 .699 -0.884 
73 .4  0.497 -1. 24 0.219 

-97. 4 0.469 -0. 282 
-206 3.48 -2. 04 -0. 653 
-79 .5  -0 .383  0.553 

300-mb level, all levels now have multiple correlation 
coefficients greater than 0.85. Once again, these correla- 
tions are achieved with three or fewer predictors. Although, 
as expected, most of the selected predictors are brightness 
temperatures within the 15-pm COz, there are several 
outside the band. At 700 and 500 mb, TB(1064 cm-'), in 
the 9.6-pm 0, band, is the best single predictor of tem- 
perature. However, it is only slightly better than bright- 
ness temperatures in the CO, band. These results reinforce 
the recommendation made above; that is, to make use of 
this redundancy in the spectral observations to  improve 
the temperature specification by averaging temperatures 
obtained from several regression equations, thus helping 
to eliminate the effects of random errors in the spectral 
observations. 

A comparison between the coefficients of multiple cor- 
relation for the complete data set and for clear skies 
only is shown in figure 2. For all pressure levels except 
300 mb, the coefficient of multiple correlation is, as 
expected, higher in the case of clear skies. The anomaly 
a t  300 mb presumably represents a quirk in t,he data 
sample. 

The usefdness of the derived regression equations can 
best be evaluated by comparing the standard error of 
estimate of the temperature specification with the standard 
deviation of temperature in the data sample. If the regres- 
sion technique represented no skill in the specification of 
temperature, this woulcl manifest itself by a standard 
error of estimate equal to the standard deviation. The 
high coefficients of correlation obtained for temperature 
indicate that such is not the case here, as is illustrated in 
figure 3, which compares the standard errors with the 
standard deviations. For clear skies, the standard error 
of estimate is between 2" and 3OC at  all atmospheric 
pressure levels compared to standard deviations ranging 
from 3.5' to 7.5OC. For the complete data set, the standard 
error of estimate averages about 1°C greater than for 
clear skies only. It should be pointed out that part of the 
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FIGURE 2.-Coefficient of multiple correlation (r) between tempera- 
ture and infrared spectral predictors for the complet,e data set 
and for clear skies only. 

standard error of estimate is a result of errors in the 
meteorological data that are used to develop the regression 
relations. Although confined to the 30°-600N latitude 
sector, much of the meteorological data are from oceanic 
regions, and lack of radiosonde observations in these 
regions causes uncertainties in the meteorological analyses. 
There is no doubt that lower errors would result if the 
regression relationships were developed and verified 
against more accurate meteorological data. For example, 
Smith et al. (1970) obtain a root-mean-square (rms) 
temperature error of 1.5"-2.Ooc for clear skies when 



they verify their statistical technique aga.inst data over 
Western Europe where the satellite data are within 3 hr 
of the standard radiosonde release times. 

It is of interest to compare the results for the complete 
data set with the results obtained by Smith et al. (1970) 
for cloudy cases. I n  their technique, they use an iterative 
procedure to eliminate the effect of clouds. The proce- 
dure requires the use of a measured or estimated surface 

'oo?.O 210 3.0 4.0 5.0 6.0 7 0  I 

I'C) 

FIGURE 3.-Standard errors of estimate ("C) and standard devia- 
tions ("C) for temperature for the complete data set and for 
clear skies only. 

temperature to determine whether clouds are present or 
not. The surface temperature is compared to the bright- 
ness temperature in the window wavelength of the 
satellite infrared spectrometer (SIRS) and if i t  is more 
than 5OC higher than the observed window brightness 
temperature, clouds are assumed to be present. For such 
cloudy conditions, Smith et al. (1970) obtain rms tem- 
perature errors that average 2.Oo-2.5OC when verified 
against reasonably accurate meteorological data. This 
compares to an average standard error of estimate of 
about 3.5OC in the present study. However, the present 
regression equation for the complete data set does not 
require any information on surface temperature-only 
satellite observations are used to specify the temperature 
structure. As a result, the errors are somewhat larger 
than in the case where surface temperature is known and 
corrections for clouds are made. 

The standard error estimates obtained for the complete 
data set probably are good estimates of the maximum 
errors that would result from operational application of 
the stepwise regression technique to the IRIS spectra. 
Separation of cloudy from clear conditions (by means of 
either surface temperature information or satellite cloud 
pictures) and development and verification of the regres- 
sion relationships on reasonably accurate meteorologi- 
cal data should bring temperature errors down to the 
lo-2OC range. The global meteorological network is 
striving for 1°C temperature accuracy. However, 
where conventional observations are not available, 
even 2OC accuracy could be useful. 

Geopotential Heights 

According to the hypsometric equation, the geopoten- 
tial height of a pressure level depends upon the pressure 
at the earth's surface and the mean temperature of the 

TABLE 6.-Results of stepwise multiple regression analysis of geoporential height* (m) using complete data set 

Pressure level (mb) Coefficieut of multiple correlatioii Predictors Intercept and  regressiou coefficients 

850 
700 
500 
300 
200 
100 

0. 80 TB(min) 6,260 -28. 2 
. 86 TB (min) 9, 148 -41. 2 
. 8 9  TB(min) 14,091 -63. 4 
. 9 1  TB(min) 20, 634 -92. 8 

. 88 TB(min) v[T~(min)l  17, 732 -57. 0 -7. 36 

. 92 TB(min) 712 18,459 -91. 2 7. 60 

'Departures from a constant value a t  each pressure level 

TABLE 7.-Results of stepwise multiple regression analysis of geopotential height* (m) for clear-sky data 

Pressure level (mb) Coefficient of niultiple correlation Predictors Intercept aud  regression coefficients 

850 0. 88 702 450 9,636 -48.8 5. 44 

500 . 9 4  69 1 702 744 10,061 -6. 68 -63. 2 22. 4 
700 . 9 2  702 744 8, 063 -51. 8 14. 2 

300 . 94 1198 702 733 10,636 5. 85 -86. 6 29. 0 
200 . 94 1198 691 5,005 15. 2 -41. 6 
100 . 94 1064 691 1052 2, 176 24.7 -21.4 -15.6 

'Departures from a constant value a t  each pressure level 
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atmosphere between the earth’s surface and the pressure 
level. Thus, one would expect the geopotential height of 
a pressure level to be correlated with the mean tempera- 
ture of the layer below the pressure level. Such correla- 
tions have indeed been found by Smith and Fritz (1969) 
who also find that upper tropospheric heights are also 
highly correlated with lower stratospheric temperatures. 
These correlations between the temperature and height 
field suggest that the infrared spectral data, being sen- 
sitive to the temperature field, can be used to specify the 
geopotential height field. Exploiting this possibility, Smith 
et al. (1970) have successfully obtained geopotential 
heights from the SIRS experiment on Nimbus 3. 

Results of the stepwise multiple regression analyses 
with geopotential height as a predictand are shown in 
table 6 for the complete data set and in table 7 for clear 
skies only. As in the specification of temperature, T,(min) 
is the best predictor when all 500 spectra are included. 
For clear skies, predictors are main1 y brightness temper- 

- 

w U 

D - 
rn m 

U il 

GEOPOTENTIAL HEIGHT 

A11 cases 

Clear shes only 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 

i 
I I I / (  atures in the COz band, although a t  300 and 200 mb, a 

brightness temperature in the 6.3-pm HzO band is the 
leading predictor, and a t  100 mb a brightness tempera- 900 

I000 

A Of the multil’le coefficient for FIGURE 4.-coefficient of multiple ‘correlation ( r )  between geopo- 
the complete data set and for clear skies OnlT is Presented 
in figure 4. For clear skies, all but the lowest level (850 mb) 
have multiple correlations greater than 0.9; for the com- 
plete data set, all but the lowest level have multiple 
correlations greater than 0.85. The correlation coeffi- 

perature. Presumably. this is due to the dependence of 
geopotential height of a pressure surface on the mean 
temperature of an atmospheric layer, which, because of 

sities are sensitive to. Or put  another way, if the errors 
of the satellite-specified temperatures at the different 
pressure levels are random with respect to each other, 
then the mean temperature of a number of levels (and, 
hence, the geopotential height) can be specified more 
accurately then the temperature a t  a single level. 

The standard errors of estimate and standard devia- 
tions for geopotential height are plotted in figure 5. 
For clear skies, the standard error of estimate has an aver- 
age value of about 70 m;  for the complete data set, the 
stnndard error of estimate has an average of about 85 m. 
As in the case of temperature, parts of these errors are 
due to errors in the meteorological analyses and could 
be reduced by developing and verifying the regression 

tential height and infrared spectral predictions for the complete 
data set and for clear skies onlv. 
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\ cients are greater for geopotential height than for tem- 

broad weighting functions, is what the infrared inten- 200- 
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- 

equations with accurate meteorological data. The ac- 900- 

I I I curacy of geopotential heights obtained from radiosonde ‘-0 IO0  200 300 
observations is about 0.4 percent (Leviton 1971), and this fm) 

value represents a goal for any satellite technique. At 
500 mb, this means an rnis error of 20 m ;  a t  100 mb, the 
rms error is 64 m. At present, the main contribution of 
satellite-derived geopotential heights would be in regions 
of the world that lack radiosonde observations. Such 
application of the statistical technique of Smith et al. 
(1970) has been made. For clear skies, they obtain rms 
errors of approximately 30 m, and for cloudy skies, 

6 about 50-60 m. However, their technique of height 
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FIGURE 5.--Standard errors of estimate (m) and standard devia- 
tions (m) for geopotential height for the complete data  set and 
for clear skies only. 

specification makes use of the observed 850-mb geopo- 
tential height to correct the SIRS statistically derived 
heights. 

One method of reducing the errors of the regression 
technique is to average the specifications obtained from 



TanLe 8.-Resul/s of stepwise multiple regression analysis of tropopause (trop.) characteristics using rhe complete data set 

Parameter Coefficient of multiple Predictors 
correlation 

Intercept and regression coefficients 

Trop. pressure (cb) 

Trop. temperature (“C) 

0. 79 691 v[T,(min)] 

0. 58 691 v[TB(min)l 

- 158 1 .37  -0. 177 

49. 5 0. 859 -0 .429  

several consecutive satellite spectra. Consecutive spectra 
are of the order of 100 km apart in the horizontal. Global 
meteorologicol observational requirements for the Global 
Atmospheric Research Program (Tepper and Rutten- 
berg 1970) call for a horizontal resolution of 400 km. 
Thus, averaging of the specifications of three or four 
consecutive spectra \vould reduce errors while maintaining 
the horizontal resolution within required limits. 

Tropopause Characteristics 

Results of the stepwise multiple regression analyses 
with tropopause pressure and tropopause temperature as 
predictands are shown in table 8. As discussed in section 2, 
we expected that TB (min) mould be a good predictor of 
tropopause temperature, and that v[ TB (min)], the wave 
number of minimum brightness temperature along the 
side of the 15-pm band, would be a good predictor of 
tropopause altitude (or pressure). The results shown in 
table 8 do indicate that v[TB(min)] is a predictor for 
specification of tropopause pressure. However, TB(min) 
is not included as a predictor of tropopause temperature. 
Somewhat puzzled, we examined the correlation matrix 
for the specification of tropopause characteristics and 
found that the best single predictor of tropopause tempera- 
ture is TB(691 cm-I) with a correlation coefficient of 0.43. 
However, TB(min) is a close second with r=0.41; 
v[TB(min)] is third with T =  -0.40. I n  the stepwise mul- 
tiple regression analysis for tropopause temperature, 
TB(691 cm-’) is therefore selected as the first predictor. 
The selection of v[TB(min)] rather than TB(min) as the 
second predictor is due to TB(min) being highly correlated 
with the first predictor, TB(691 cm-I), whereas v[TB(min)] 
is not. These correlations among the different brightness 
temperatures indicate redundancies in the observed 
spectra that, as pointed out previously, can be exploited 
by deriving two or more regression rela tionships and 
averaging the results of each equation to obtain an esti- 
mate of the predic,tnnd. 

The multiple correlation coefficients indicate that 
tropopause pressure (r= 0.79) can be more accurately 
specified than tropopause temperature (T= 0.58). A 
comparsion of the standard error estimates with the 
standard deviations in the complete data set is pre- 
sented in table 9. These results indicate that tropopause 
pressure can be specified to  within&32 mb and tropopause 
temperature to f 4.8‘C from satellite infrared spectra. 
It is not immediately evident whether the specification of 
tropopause pressure to this accuracy is of operational 
usefulness. 

TABLE 9.--Standard deviations of sample and standard errors of 
estimate for tropopause characteristics 

Parameter Standard deviation Standard error 
of sample of estimate 

Tropopause pressure (mb) 52 32 
Tropopause temperature (“C) 5. 9 4. 8 

4. CONCLUSIONS 

Exploratory studies with Nimbus 3 IRIS  data indicate 
that, in addition to temperature, such meteorological 
parameters as geopotential heights of pressure surfaces, 
tropopause pressure, and tropopause temperature can 
be inferred from the observed spectra with the use of 
simple regression equations. The technique of screening 
the IRIS spectral data by means of stepwise regression t o  
obtain the best radiation predictors of meteorological 
parameters is validated. The simplicity of application 
of the technique and the simplicity of the derived linear 
regression equations-which contain only a few terms- 
suggest usefulness for this approach. The redundancy 
found in the complete spectrum-brightness temperatures 
a t  one wave number may be just as well correlated with a 
particular meteorological parameter as brightness tem- 
peratures a t  other wave numbers-suggests the pos- 
sibility of deriving a set of regression equations for the 
specfication of a meteorological parameter, each equation 
having different predictors. By averaging the results of 
these equations, one can eliminate some of the random 
instrumental errors associated with the observed spectrum. 
The results obtained for the inference of geopotential 
heights, tropopause pressure, and tropopause temperature 
confirm the hypothesis that meteorological parameters 
that are related to the primary variables influencing the 
observed infrared spectrum can also be inferred directly 
from the spectrum. 

It was not the purpose of this paper to analyze in detail 
the causes of the observed correlations between the bright- 
ness temperatures and the meteorological parameters. 
Part of the observed correlation may be due to latitudinal 
trends in the predictors and in the meteorological param- 
eters. For example, part of the correlation of T B  (min), 
which is representative of temperatures in the tropopause 
region, with lower tropospheric temperatures may be due 
to the latitudinal trends of both tropopauso temperature 
and lower atmospheric temperatures. On the other hand, 
part of the correlation may occur because the variations 
of tropopause temperature and lower atmospheric temper- 
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ature around a latitude circle (or in time) are correlated 
with each other a t  any particular latitude. The existence of 
such correlations between the temporal variations of tro- 
popause temperature and lower atmosphere temperatures 
a t  individual weather stations have been known for some 
time. (See e.g., Haurwitz 1941, pp. 320-327, who reviews 
the 1919 work of Dines and others.) It would be of interest 
to determine whether the correlations and standard 
errors of estimate would be greater or smaller if one were 
to perform a similar analysis for a single latitude or for 
individual stations over a long time period. Such a com- 
parison of latitudinal versus temporal effects can only be 
carried out with a larger sample of data than that used in 
this exploratory study and is strongly recommended as a 
follow-on to the present study. It is also suggested that 
verification tests be performed on independent data 
samples and that the regression relationships be derived 
and verified for regions where conventional meteorologi- 
cal data are plentiful. Additional recommendations for fur- 
ther research along these lines are as follows: 

1. The feasibility of inferring other meteorological parameters- 
such as winds, clouds, water vapor, and jet stream characteris- 
tics-directly from the I R I S  spectra should be investigated. 

2. The spectral and spatial redundancy of the I R I S  data should 
be exploited by deriving sets of regression relationships for a single 
meteorological parameter and by combining results for several 
consecutive spectra. 

3. Technique> for improving meteorological inferences in the 
presence of cloudy skies should be developed. 

4. The possibility should be explored of using stepwise regression 
analysis techniques on the I R I S  spectra for the purpose of deter- 
mining which wavelengths should be observed by an N channel 
radiometer for atmospheric inferences from an  operational mete- 
orological satellite. 
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